Данные о синтезе GeP из элементов при нормальном давлении привецены в работе (7), где получены две фазы GeP_{1.01} и GeP_{0.73}, интенсивности и межплоскостные расстояния которых не совпадают с результатами, полученными в настоящей работе (табл. 1). Аналогичный синтез GeP из элементов, но при высоких давлениях (до 40 кбар) и температурах, проведен в работе (⁸), где получены данные

Таблица 1

N

в табл. 1.
При давлении выше 70 кбар и
температурах от 500 до 1200° харак-
тер разложения CdGeP ₂ изменяется.
На дебаеграммах вещества, получен-
ного при указанных выше парамет-
рах, отчетливо видны линии метал-
лического кадмия, что, возможно,
указывает на разложение, аналогич-
ное упомянутому разложению для
CdSiP ₂ . Межплоскостные расстояния
и интенсивности GeP ₂ приведены в
табл. 1. Литературные данные о син-
тезе GeP ₂ при атмосферном давлении
и в условиях высоких давлений и
температур отсутствуют. Пикномет-
рически определенная плотность сме-
си $(Cd + GeP_2)$ $\rho_{\partial \Phi} = 5.6 \pm$
$\pm 0,02$ г/см ³ , что соответствует отно-
сительному уменьшению удельного
объема при разложении на 25%. Об-
ратный синтез исходного соединения
CdGeP ₂ осуществляется нагреванием
полученной при разложении смеси в
вакууме при температуре 400° в тече-
ние одного часа.

для нескольких форм предполагаемого соединения состава GeP, не совпа-

дающие с данными, приведенными

Для CdSnP₂ и ZnSnP₂ при давлении выше 40 кбар и температуре 400-600° найдено однотипное разложение

$3CdSnP_2 \rightarrow$	$Cd_3P_2 +$	3SnP	+P	(черный),
$3ZnSnP_2 \rightarrow$	$Zn_3P_2 +$	3SnP	$+\mathbf{P}$	(черный).

Іежі	плоскостные	pa	сстояния
и	интенсивнос	ти	линий

1	d		d
	Для	GeP	
о. сл. о. сл. о. сл. ср. ср. сл. сл. о. сл. с. сл.	3,868 3,494 3,133 2,979 2,841 2,715 2,339 1,981 1,953	с. о. сл. ср. сл. сл. о. сл. о. сл. сл. сл.	$\left \begin{array}{c}1,877\\1,811\\1,590\\1,554\\1,497\\1,321\\1,296\\1,212\\1,163\end{array}\right $
	Для	GeP_2	
сл. 0. сл. 0. сл. сл. сл. сл. 0. сл. сл. 0. сл. 0. сл. 0. сл. 0. сл.	$\begin{array}{c} 4,435\\ 3,709\\ 3,304\\ 3,100\\ 2,922\\ 2,675\\ 2,104\\ 1,998\\ 1,811\\ 1,765\\ 1,675\\ 1,648\\ \end{array}$	0. Сл. 0. Сл.	$\begin{smallmatrix} 1,590\\ 1,542\\ 1,463\\ 1,212\\ 1,146\\ 1,028\\ 0,9753\\ 0,9502\\ 0,9352\\ 0,98613\\ 0,8471\\ \end{smallmatrix}$
Для ф	азы SnP	при 10-	20 кбар
ср. ср. сл. сл. ср. ср. сл. с. сл. сл. сл.	$ \begin{vmatrix} 3,591 \\ 3,428 \\ 2,922 \\ 2,436 \\ 2,276 \\ 2,006 \\ 1,906 \\ 1,791 \\ 1,728 \end{vmatrix} $	с. сл. ср. сл. сл. сл.	1,648 1,480 1,427 1,352 1,331 1,273

При этом структура SnP соответствовала структуре типа NaCl с параметром $a = 5,506 \pm 0,002$ Å (см. табл. 2).

Расчетное изменение удельных объемов $\Delta V / V_0$ составляет 13% для CdSnP₂ и 11,9% для ZnSnP₂, а относительные изменения объемов, полученные из пикнометрических измерений плотности смеси продуктов разложения, равны 13 и 12% соответственно.

Полученные рентгеновские данные несколько отличаются по интенсивности линий и параметрам элементарной ячейки от данных, приведенных в работе (8), в которой найдена кубическая фаза SnP при синтезе под давлением из смеси элементов Sn + P. Это отдичие, возможно, связано с отклонением от стехиометрического состава. При нормальном давлении (9) SnP кристаллизуется в гексагональной структуре с параметрами элементарной ячейки a = 8,78 Å; c = 5,98 Å; z = 8, плотность, рассчитанная по рентгеновским данным, равна 4,98 г/см³.

При давлении 10-20 кбар и температуре 700° для CdSnP2 имеет место, по-видимому, тот же самый тип разложения (на это указывает присутствие на дебаеграммах линий Cd₃P и черного фосфора). Однако SnP в этой области давлений имеет другую кристаллическую структуру, не совпадающую с данными (9). Межплоскостные расстояния и интенсивности линий этой фазы приведены в табл. 1.

В интервале давлений от 20 до 40 кбар сосуществуют обе фазы SnP, на что указывает присутствие на дебаеграммах линий обеих фаз.

Таб'лица 2

I	^d измер	hkl	d _{вычисл}	I	d _{измер}	hkl	^d вычисл
ср. с. с. с. с. с. сл. с.	3,15 2,72 1,93 1,65 1,58 1,37 1,26 1,23	111 200 220 311 222 400 331 420	3,18 2,75 1,95 1,66 1,59 1,38 1,26 1,23	с. ср. с. ш. ср. с. о. с. с. ш. сл. ш. сл. ш	1,12 1,058 0,969 0,928 0,916 0,870 0,839 0,829 0,795	$\begin{array}{r} 422\\511/333\\440\\531\\600/442\\620\\533\\622\\444\end{array}$	1,12 1,060 0,973 0,931 0,918 0,871 0,840 0,830 0,795

Межплоскостные расстояния и интенсивности линий для фазы SnP со структурой типа NaCl

При давлении выше 60 кбар и температуре выше 600° на дебаеграммах CdSnP2 так же, как и в случае CdGeP2, появляются линии металлического кадмия, интенсивность которых увеличивается с ростом давления. Однако линии, соответствующие кубической фазе SnP со структурой типа NaCl, присутствуют до давления 120 кбар.

Для ZnSnP₂ не обнаружено аналогичного появления металлического цинка во всем исследованном диапазоне давлений и температур. ZnGeP₂ при давлении до 120 кбар и температуре до 1500° и ZnSiP₂ при давлении до 90 кбар и температуре до 1500° не претерпевают никаких изменений.

Как видно из приведенных выше результатов, соединения CdSiP₂, CdGeP2, CdSnP2 и ZnSnP2 в условиях высоких давлений и температур разлагаются аналогично соответствующим соединениям С мышьяком CdSnAs₂, CdGeAs₂ и ZnSnAs₂ (²). Отличие состоит в характере разложения, а именно в выделении металлического кадмия в случае CdSiP₂, CdGeP₂ и CdSnP₂. Диаграммы (T, P) для двух последних соединений являются более сложными, чем для соответствующих арсенидов, и для окончательной интерпретации нуждаются в дополнительных данных об устойчивости соединений GeP, GeP₂, SnP при высоких давлениях и температурах.

В заключение авторы выражают благодарность акад. Л. Ф. Верещагину за постоянное внимание и участие в обсуждении результатов, а также Н. В. Каляевой, А. С. Борщевскому, Ю. А. Валову, В. И. Соколовой и И. И. Тычине за помощь при выполнении работы.

Институт физики высоких давлений Академии наук СССР

Поступило 30 XII 1968

Физико-технический институт им. А. Ф. Иоффе Академии наук СССР

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ C. J. M. Rooymans, Investigations on Some Chalcogenides at Very High Pressures, Universiteit van Amsterdam, 1967. ² A. R. Storm, A. Yayaraman, J. Phys. Chem. Solids, 29, 623 (1968). ³ T. Wadsten, Acta chem. scand., 21, 1374 (1967). ⁴ T. Wadsten, Acta chem. scand., 21, 1374 (1967). ⁴ T. Wadsten, Acta chem. scand., 21, 593 (1967). ⁵ I. Osugi, R. Namikawa, Y. Tanaka, Rev. Phys. Chem. Japan, 36, 35 (1966). ⁶ A. S. Borshchevskii, N. A. Goryunova et al., Phys. Stat. Solidi, 21, 1, 9 (1967). ⁷ M. Zumbusch, Zs. anorg. u. allgem. Chem., 242, 237 (1939). ⁸ I. Osugi, J. Chem. Soc. Japan, Pure Chem. Sect., 89, № 8, 746 (1968). ⁹ G. Katz, J. A. Kohn, J. D. Broder, Acta crystallogr., 10 607 (1957). 10, 607 (1957).